The Projection Method for Reaching Consensus and the Regularized Power Limit of a Stochastic Matrix

نویسندگان

  • Rafig P. Agaev
  • Pavel Yu. Chebotarev
چکیده

In the coordination/consensus problem for multi-agent systems, a well-known condition of achieving consensus is the presence of a spanning arborescence in the communication digraph. The paper deals with the discrete consensus problem in the case where this condition is not satisfied. A characterization of the subspace TP of initial opinions (where P is the influence matrix) that ensure consensus in the DeGroot model is given. We propose a method of coordination that consists of: (1) the transformation of the vector of initial opinions into a vector belonging to TP by orthogonal projection and (2) subsequent iterations of the transformation P. The properties of this method are studied. It is shown that for any non-periodic stochastic matrix P, the resulting matrix of the orthogonal projection method can be treated as a regularized power limit of P.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reaching the betz limit experimentally and numerically

The Betz theory expresses that no horizontal axis wind turbine can extract more than 16/27 (59.3%) of the kinetic energy of the wind. The factor 16/27 (0.593) is known as the Betz limit. Horizontal Axis wind turbine designers try to improve the power performance to reach the Betz limit. Modern operational wind turbines achieve at peak 75% to 80% of the Betz limit. In 1919, Albert Betz used an a...

متن کامل

A novel three-stage distance-based consensus ranking method

In this study, we propose a three-stage weighted sum method for identifying the group ranks of alternatives. In the first stage, a rank matrix, similar to the cross-efficiency matrix, is obtained by computing the individual rank position of each alternative based on importance weights. In the second stage, a secondary goal is defined to limit the vector of weights since the vector of weights ob...

متن کامل

Numerical Solution of Weakly Singular Ito-Volterra Integral Equations via Operational Matrix Method based on Euler Polynomials

Introduction Many problems which appear in different sciences such as physics, engineering, biology, applied mathematics and different branches can be modeled by using deterministic integral equations. Weakly singular integral equation is one of the principle type of integral equations which was introduced by Abel for the first time. These problems are often dependent on a noise source which a...

متن کامل

Fast System Matrix Calculation in CT Iterative Reconstruction

Introduction: Iterative reconstruction techniques provide better image quality and have the potential for reconstructions with lower imaging dose than classical methods in computed tomography (CT). However, the computational speed is major concern for these iterative techniques. The system matrix calculation during the forward- and back projection is one of the most time- cons...

متن کامل

Retrieving Three Dimensional Displacements of InSAR Through Regularized Least Squares Variance Component Estimation

Measuring the 3D displacement fields provide essential information regarding the Earth crust interaction and the mantle rheology. The interferometric synthetic aperture radar (InSAR) has an appropriate capability in revealing the displacements of the Earth’s crust. Although, it measures the real 3D displacements in the line of sight (LOS) direction. The 3D displacement vectors can be retrieved ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1109.3948  شماره 

صفحات  -

تاریخ انتشار 2011